Intuiface Unity Adapter
Introduction
The IntuiFace Unity Adapter is a convenient way to integrate your Unity application into an IntuiFace experience, as a standard Asset, exposing Properties, Triggers and Actions.
This integration requires three steps :
· Defining a XML file defining the asset specifications
· Integrating those specifications in your Unity projet, so that it can react to the IntuiFace commands and be integrated in the IntuiFace rendering.
· Build your Unity application, and, in IntuiFace, add the IFU file to your content library.
Currently, this integration requires that your OS is at least Windows 8.
Xml file definition
In order to use your Unity application, you have to define a simple “.ifu” file defining the Unity asset properties, triggers and actions.
This file must be created with the same name and in the same folder than your Unity main executable file.
[image:]
The following sample illustrates the structure of a typical .ifu file.
[image:]
· Root :
· DebugMode : True or False. If true, the developer can use Unity to debug his application.
· Property element
A Property element defines an IntuiFace property from the Unity Asset.
· Name : Name of the property
· Category [optional] : Category of the property in the composer
· SubCategory [optional] : Subcategory of the property in the composer
· Description : This description will be displayed in IntuiFace’s tooltips
· Default value : Default value for this property.
Please note that all properties are handled as strings. When handling numerates, your Unity application will have to parse it using InvariantCulture.
· Trigger element
A Trigger element defines an IntuiFace Trigger from the Unity asset
· Name : Name of the trigger
· Category [optional] : Category of the trigger in the composer
· SubCategory [optional] : Subcategory of the trigger in the composer
· Description : This description will be displayed in IntuiFace’s tooltips
An Unity trigger can send up to 5 parameters (but the parameters name isn’t defined in the IFU file).
· Action element
An Action element defines an IntuiFace Action from the Unity asset
· Name : Name of the action
· Category [optional] : Category of the action in the composer
· SubCategory [optional] : Subcategory of the action in the composer
· Description : This description will be displayed in IntuiFace’s tooltips
· Parameters : Each parameter is defined by a Name and a Description.
Tooling your Unity application
Introduction
Tooling your Unity application is quite straightforward :
· First, add the IntuiFace package to your project
· Then you have to add a prefab to your scenes, managing the connection and the video streaming from your Unity application to IntuiFace
· Finally, you can access to properties, triggers and actions from your script, using a singleton helper class.
Adding IntuiFace package
In Unity, select Custom Package from “Assets\Import Package” menu.
[image:]
Browse to IntuiFaceUnityAsset.unitypackage and select it. Confirm and import all the package content in your project.
The package content is set up in the IntuiFaceUnityAsset directory.
A plugin is added to your Plugins directory.
Setting up your scenes
Simply drag and drop the “IntuiFace Unity Asset” prefab to your scene. It can be found in folder “Assets\IntuiFaceUnityAsset\Prefab”
[image:]
Handling properties, triggers and actions
To read/write properties, raise triggers and register actions, you have to use the IntuiFaceUnityAssetConnector.Instance API.
Its API is quite straightforward :
· IsConnected : If True, IntuiFace is connected. Check it before using any other services.
· GetIntuiFacePropertyValue(string strPropertyName) : Returns the current value of the given property, Null if undefined.
· SetIntuiFacePropertyValue (string strPropertyName, string strPropertyValue) : Set the current value of the given property.
· RegisterMethodDelegate(string strActionName, IntuiFaceMethodDelegate dlgDelegateToBeCalled) : Register the given delegate to handle the given action
· UnregisterMethodDelegate (string strActionName) : Unregister the delegate associated with the given action name
· RaiseIntuiFaceTrigger (string strTriggerName, string strParameter1,…) : Raise the given trigger with the given arguments.
Samples
Reading a property :
[image:]
Setting a property :
[image:]
Registering and defining actions :
[image:]
Raising a trigger :
[image:]
Building your application
As the Unity application will be launched by IntuiFace to render the corresponding asset, you’ve to configure your application as illustrated below :
[image:]
Adding your Unity asset to IntuiFace
To add your asset to IntuiFace, build your application, copy your IFU file in the same folder than the application .exe.
[image:]
Launch IntuiFace, and add the Ifu file to your content library
[image:]
[image:]
Drag and drop the IFU to your scene :
[image:]
In the properties panel, the “Unity properties” category will display the properties defined in the IFU file if they do not define custom categories. Triggers and actions are available in the Triggers and actions panel.
[image:]

The “Application” category offers a set of properties, allowing to control the integration of the Unity application in IntuiFace :
[image:]
· Unity application : IFU file defining the Unity application
· Rendering quality : Highest, high, medium, low, very low : The rendering quality. When lowering it, the Unity view get upscaled. Due to the underlying mechanisms, the framerate is drastically impacted by the native view size of your Unity asset onscreen. If your application is intended to be fullscreen, decrease the Rendering quality.
[bookmark: _GoBack]Debug your Unity application
To debug your Unity application with IntuiFace, for example to tune properties, triggers and actions, set up the “DebugMode” flag to True in your Ifu file. Doing so, IntuiFace won’t run the Unity application Exe, and will wait for Unity to be connected.
Simply open your project in Unity, and runs it from Unity. It will launch, and be displayed both in IntuiFace and Unity.
Please note that mouse click on your application won’t work from IntuiFace, and that the size of your application in the Unity window will be used.

image5.png

image6.png

image7.png

image8.png

image9.png

image10.png

image11.png

image12.png

image13.png

image14.png

image1.png

image2.png

image3.png

image4.png

